Abstract

We obtain the Laplacian comparison theorem and the Bishop-Gromov comparison theorem on a Finsler manifold with the weighted Ricci curvature Ric∞ bounded below. As applications, we prove that if the weighted Ricci curvature Ric∞ is bounded below by a positive number, then the manifold must have finite fundamental group, and must be compact if the distortion is also bounded. Moreover, we give the Calabi-Yau linear volume growth theorem on a Finsler manifold with nonnegative weighted Ricci curvature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.