Abstract
In this paper we study multi-dimensional mean-field backward doubly stochastic differential equations (BDSDEs), that is, BDSDEs whose coefficients depend not only on the solution processes but also on their law. The first part of the paper is devoted to the comparison theorem for multi-dimensional mean-field BDSDEs with Lipschitz conditions. With the help of the comparison result for the Lipschitz case we prove the existence of a solution for multi-dimensional mean-field BDSDEs with an only continuous drift coefficient of linear growth, and we also extend the comparison theorem to such BDSDEs with a continuous coefficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.