Abstract

In this paper, the effect of traction speed on the four-lumen plastic micro-catheter (FLPMC) was numerically studied. Moreover, the numerical simulations of FLPMC based on two kinds of extrusions, i.e., traditional extrusion and gas-assisted extrusion were performed and compared. Numerical results show that with the increase of traction speed, the sizes of FLPMC for both extrusions all decrease. The sizes of FLPMC based on gas-assisted extrusion are sightly larger than those of the traditional extrusion. To ascertain the reasons, the flow velocities, pressure, shear stress and first normal stress difference distributions of melt based on both extrusions under two different traction speeds were obtained and compared. Results show that with the increase of traction speed under the fixed volume inlet flow rate, the radial flow velocities of melt at the outlet of die decrease but the axial flow velocities increase, which results in the decrease of the die swell at the outlet of die and the size shrinkage of exit face for the FLPMC based on both extrusions. However, for the gas-assisted extrusion, the axial velocities are larger, and the pressure, shear stress and first normal stress difference are far less than those of traditional extrusion, which results in the larger unit volume flow rate, then the sizes of cross-section face are larger than those of the traditional extrusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.