Abstract

BackgroundMany content-based statistical features of secondary structural elements (CBF-PSSEs) have been proposed and achieved promising results in protein structural class prediction, but until now position distribution of the successive occurrences of an element in predicted secondary structure sequences hasn’t been used. It is necessary to extract some appropriate position-based features of the secondary structural elements for prediction task.ResultsWe proposed some position-based features of predicted secondary structural elements (PBF-PSSEs) and assessed their intrinsic ability relative to the available CBF-PSSEs, which not only offers a systematic and quantitative experimental assessment of these statistical features, but also naturally complements the available comparison of the CBF-PSSEs. We also analyzed the performance of the CBF-PSSEs combined with the PBF-PSSE and further constructed a new combined feature set, PBF11CBF-PSSE. Based on these experiments, novel valuable guidelines for the use of PBF-PSSEs and CBF-PSSEs were obtained.ConclusionsPBF-PSSEs and CBF-PSSEs have a compelling impact on protein structural class prediction. When combining with the PBF-PSSE, most of the CBF-PSSEs get a great improvement over the prediction accuracies, so the PBF-PSSEs and the CBF-PSSEs have to work closely so as to make significant and complementary contributions to protein structural class prediction. Besides, the proposed PBF-PSSE’s performance is extremely sensitive to the choice of parameter k. In summary, our quantitative analysis verifies that exploring the position information of predicted secondary structural elements is a promising way to improve the abilities of protein structural class prediction.

Highlights

  • Many content-based statistical features of secondary structural elements (CBF-PSSEs) have been proposed and achieved promising results in protein structural class prediction, but until now position distribution of the successive occurrences of an element in predicted secondary structure sequences hasn’t been used

  • We used the Position specific iterated PRED (PSIPRED) to predict the secondary structures of protein

  • The PBFPSSE, CBF-PSSE and the proposed combined feature set were fed into support vector machine to make prediction of its protein structural class, respectively

Read more

Summary

Introduction

Many content-based statistical features of secondary structural elements (CBF-PSSEs) have been proposed and achieved promising results in protein structural class prediction, but until now position distribution of the successive occurrences of an element in predicted secondary structure sequences hasn’t been used. It is necessary to extract some appropriate position-based features of the secondary structural elements for prediction task. Due to the exponential growth of the number of known protein sequences, the burden of experimental screening methods regarding time and cost to find the 3-dimensional structure would become even more unbearable. If one can develop fast computational methods to predict at least some important characteristics of protein structures, which will help to speed up and reduce the cost for protein annotation. Computational methods are actively pursued to overcome the limitations of experimental screening methods

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.