Abstract

Three types of polypropylene, namely propylene homopolymer (HPP), block copolymer of propylene with ethylene (CPP-B) and random copolymer of propylene with ethylene (CPP-R), were melted and isothermally crystallized in a self-designed vessel under supercritical carbon dioxide (Sc-CO2) atmosphere. The melting behavior and crystalline forms of crystallized samples were investigated using differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD). The results showed that the presence of Sc-CO2 could improve the crystallinity for all three polypropylenes, and the promoting effect was more obivious with increasing CO2 pressure. In addition, it was observed that γ-crystals could be obtained in the CPP-B and CPP-R samples crystallized under Sc-CO2, while no γ-crystals were formed in HPP under the given conditions. The relative content of γ-crystals obtained in CPP-R samples was much higher than that of CPP-B, and 100% γ-phase could be formed in the CPP-R sample when subjected to 14 MPa Sc-CO2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.