Abstract

Transverse momentum [Formula: see text] distributions of primary charged particles were compared to simulations using the Ultra Relativistic Quantum Molecular Dynamics (UrQMD) transport model and the HIJING 1.0 model in minimum bias p–Pb collisions at [Formula: see text] in the pseudorapidity [Formula: see text] regions: [Formula: see text], [Formula: see text] and [Formula: see text] and in the transverse momentum range [Formula: see text]. The simulated distributions were then compared with the ALICE data and it was observed that UrQMD predicts systematically higher yields than HIJING 1.0. Both codes cannot describe the experimental data in the range of [Formula: see text], though in the region of [Formula: see text] the model predictions are very close to the experimental results for particles with [Formula: see text], [Formula: see text]. The ratio of the yield at forward pseudorapidity to that at [Formula: see text] was also studied. It was observed that the predictions of the models depend on [Formula: see text]. In the experiment there is no essential difference of yields for particles from the intervals of [Formula: see text], [Formula: see text] and [Formula: see text]. The differences are significant for the models where the ratios are systematically less than 1. This means that the results are not connected to a medium effect but reflect the Cronin effect. We are led to conclude that the codes cannot take into account satisfactorily the leading effect due to the asymmetric p–Pb fragmentation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call