Abstract
Today, retrofitting of the old structures is important. For this purpose, determination of capacities for these buildings, which mostly are non-ductile, is a very useful tool. In this context, non-ductile RC joint in concrete structures, as one of the most important elements in these buildings are considered, and the shear capacity, especially for retrofitting goals can be very beneficial. In this paper, three famous soft computing methods including artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS) and also group method of data handling (GMDH) were used to estimating the shear capacity for this type of RC joints. A set of experimental data which were a failure in joint are collected, and first, the effective parameters were identified. Based on these parameters, predictive models are presented in detail and compare with each other. The results showed that the considered soft computing techniques are very good capabilities to determine the shear capacity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.