Abstract

Comparison study of oxidation behavior of low carbon steel was conducted at the temperature range of 500°C to 700°C under a 0.2 atm oxygen pressure by continuous and discontinuous oxidation methods. Oxidation rate of both cases was found to be increased with increasing temperature from 500°C to 700°C and obeyed parabolic rate law. In addition, activation energy for the continuous oxidation of steel was found to be a 164.8 kJ/mole, which means that oxidation rate is proportionally dependant on temperature. In case of cyclic oxidation, the oxidation rate was shown to faster than continuous oxidation at all temperatures due to direction oxidation through spallation of the oxide layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.