Abstract

In this work, we provided a comparison study of morphology and crystallization behavior of polyethylene (PE) and poly(ethylene oxide) (PEO) on single-walled carbon nanotubes (SWNTs) with assistance of supercritical CO(2). The resulting polymer/SWNT nanohybrids were characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectra, wide-angle X-ray diffraction, and differential scanning calorimetry. SWNT small bundles were decorated by PE lamellar crystals, forming nanohybrid "shish-kebab" (NHSK) structure, whereas SWNTs were only wrapped by a thin amorphous polymer coating in the case of PEO. The varying morphologies of the nanohybrids were found to depend on the molecular conformation and the interactions between polymer chains and SWNTs. Nonisothermal experiments showed that SWNTs provided heterogeneous nucleation sites for PE crystallization, while the NHSK structure hindered polymer chain diffusion and crystal growth. Also, SWNTs played antinucleation effect on PEO. In addition, the formation mechanism analysis indicated that PE chains preferred to form a homogeneous coating along the tube axis before proceeding to kebab crystal growth. The purpose of this work is to enlarge the area of theoretical understanding of introducing precisely hierarchical structures on carbon nanotubes, which are important for functional design in nanodevice applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.