Abstract

A comparison study has been conducted on the formation of catalyst nanoparticles on a high surface tension metal and low surface tension oxide for carbon nanotube (CNT) growth via catalytic chemical vapor deposition (CCVD). Silicon dioxide (SiO2) and tantalum have been deposited as supporting layers before deposition of a thin layer of iron catalyst. Iron nanoparticles were formed after thermal annealing. It was found that densities, size distributions, and morphologies of iron nanoparticles were distinctly different on the two supporting layers. In particular, iron nanoparticles revealed a Volmer-Weber growth mode on SiO2 and a Stranski-Krastanov mode on tantalum. CCVD growth of CNTs was conducted on iron∕tantalum and iron∕SiO2. CNT growth on SiO2 exhibited a tip growth mode with a slow growth rate of less than 100nm∕min. In contrast, the growth on tantalum followed a base growth mode with a fast growth rate exceeding 1μm∕min. For comparison, plasma enhanced CVD was also employed for CNT growth on SiO2 and showed a base growth mode with a growth rate greater than 2μm∕min. The enhanced CNT growth rate on tantalum was attributed to the morphologies of iron nanoparticles in combination with the presence of an iron wetting layer. The CNT growth mode was affected by the adhesion between the catalyst and support as well as CVD process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.