Abstract

mGradient corrections to the spin density (LSD) approximation for the exchangecorrelation energy are making density functional theory as useful in quantum chemistry as it is in solid-state physics. But which of the many gradient-corrected density functionals should be preferred a priori? We make a graphical comparison of the gradient dependencies of some popular approximations, discussing the exact formal conditions which each obeys and identifying which conditions seem most important. For the exchange energy, there is little formal or practical reason to choose among the Perdew-Wang 86, Becke 88, or Perdew-Wang 91 functionals. But, for the correlation energy, the best formal properties are displayed by the nonempirical rw91 correlation functional. Furthermore, the real-space foundation of rw91 yields an insight into the character of the gradient expansion which suggests that rw91 should work especially well for solids. Indeed, while improving dissociation energies over LSD, rw91 remains the most local of the gradient-corrected exchange-correlation functionals and, thus, the least likely to overcorrect the subtle errors of LSD for solids. To show that our analysis of spin-unpolarized functionals is sufficient, we also compute spin-polarization energies for atoms, finding ~w91 values only slightly more negative than SD values. Wiley & Sons, Inc. 0 1996 John

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call