Abstract
AbstractWe consider a solution u of the homogeneous Dirichlet problem for a class of nonlinear elliptic equations in the form A(u) + g(x, u) = f, where the principal term is a Leray–Lions operator defined on $ W ^{1, p} _{0} (\Omega) $ and g(x, u) is a term having the same sign as u and satisfying suitable growth assumptions. We prove that the rearrangement of u can be estimated by the solution of a problem whose data are radially symmetric.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.