Abstract

This paper deals with the stability issue for a class of stochastic delayed neural networks with Markovian switching. The jumping parameters are determined by a continuous-time, discrete-state Markov chain. Different from the usual Lyapunov–Krasovskii functional and linear matrix inequality method, we first introduce and study a new comparison principle in the field of stochastic delayed neural networks. Then, we apply this new comparison principle to obtain several novel stability criteria of the suggested system. Moreover, an example is given to illustrate the theoretical results well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.