Abstract

The mesh stiffness and contact ratio of gear drive are very important factors which have a great impact on the dynamic load. Contact ratio also affects the fluctuation and the mode of change of the mesh stiffness. In this research, a novel high contact ratio internal gear with a circular arc contact path is introduced. However, the irregular tooth profile of non-involute gear usually causes the numerical calculation to be more complex. To get the torsional mesh stiffness of a pair of internal spur gear, the two-dimensional finite element models of involute internal gear and high contact ratio internal gear are presented and compared. In addition, the influence of input torque on torsional mesh stiffness and contact ratio are analyzed. The mesh stiffness of a single tooth pair and the effect of different engagement positions on mesh stiffness are obtained and compared. Finally, experimental measurement of contact ratio is established by strain gauge technique. It is shown that the torsional mesh stiffness increases with the increase of input torque, and the greater the contact ratio, the smoother the gear drive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.