Abstract

AbstractKnowledge graphs have been widely adopted across organizations and research domains, fueling applications that span interactive browsing to large-scale analysis and data science. One design decision in knowledge graph deployment is choosing a representation that optimally supports the application’s consumers. Currently, however, there is no consensus on which representations best support each consumer scenario. In this work, we analyze the fitness of popular knowledge graph representations for three consumer scenarios: knowledge exploration, systematic querying, and graph completion. We compare the accessibility for knowledge exploration through a user study with dedicated browsing interfaces and query endpoints. We assess systematic querying with SPARQL in terms of time and query complexity on both synthetic and real-world datasets. We measure the impact of various representations on the popular graph completion task by training graph embedding models per representation. We experiment with four representations: Standard Reification, N-Ary Relationships, Wikidata qualifiers, and RDF-star. We find that Qualifiers and RDF-star are better suited to support use cases of knowledge exploration and systematic querying, while Standard Reification models perform most consistently for embedding model inference tasks but may become cumbersome for users. With this study, we aim to provide novel insights into the relevance of the representation choice and its impact on common knowledge graph consumption scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call