Abstract
The objective of this work is to study the incorporation process of Zn in InP and related ternary and quaternary layers for long wavelength laser applications in comparison with the alternative acceptor Mg. In InP above a critical concentration of (1–2)×1018 cm−3 a sudden onset of dopant diffusion during growth is observed for Zn and for Mg as well. This diffusion during growth can be markedly reduced by counter-doping with Si (Fermi level effect). Below the critical concentration Zn dopant profiles exhibit the same steep flanks as Mg dopant profiles suggesting the same low diffusion coefficients. However, Zn appears to be more suitable forp-type doping of InP, GaInAs and GaInAsP, because an accurate control of the dopant level in the epitaxial layers is easier to achieve with Zn than with Mg.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.