Abstract
Modern applications in chemometrics and bioinformatics result in compositional data sets with a high proportion of zeros. An example are microbiome data, where zeros refer to measurements below the detection limit of one count. When building statistical models, it is important that zeros are replaced by sensible values. Different replacement techniques from compositional data analysis are considered and compared by a simulation study and examples. The comparison also includes a recently proposed method (Templ, 2020) [1] based on deep learning. Detailed insights into the appropriateness of the methods for a problem at hand are provided, and differences in the outcomes of statistical results are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.