Abstract

Predictions of the polarized microwave brightness temperatures over the ocean are made using a two-scale surface bidirectional reflectance model combined with an atmospheric radiative transfer model. The reflected atmospheric radiation is found to contribute significantly to the magnitude and directional dependence of the brightness temperatures. The predicted brightness temperatures are also sensitive to the form of the shortwave spectrum. Calculations are made using a new physically based model for the wave spectrum, and preliminary comparisons are made with WindSat observations at 10.7, 18.7, and 37 GHz, for wind speeds ranging from 0-20 m/s and for vertically integrated atmospheric water vapor concentrations from 0-70 mm. Predictions of the mean (azimuthally averaged) brightness temperatures for vertical and horizontal polarization agree quite well with WindSat observations over this range of wind speeds and water vapor concentrations. The predicted azimuthal variations of the third and fourth Stokes parameters also agree fairly well with the observations, except for the fourth Stokes parameter at 37 GHz. Further adjustments of the wave spectrum are expected to improve the agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.