Abstract

More and more wind turbine manufacturers turn to using the full-scale power electronic converter due to the stricter grid code requirements to thoroughly decouple the generator from the grid connection. However, a commonly used type of this generator is still unclear, where the selections of the low-speed (LS; direct-drive) and medium-speed (MS; one-stage) permanent-magnet synchronous generators (PMSGs) are both promising solutions. This paper will assess and compare the reliability metrics for the machine-side converter (MSC) for those two configurations. First, a translation from the mission profile of the turbine to the current and voltage loading of each power semiconductor is achieved based on synchronous generator modeling. Afterward, a simplified approach to calculate the loss profile and the thermal profile is used to determine the most stressed power semiconductors in the converter. Finally, according to the lifetime power cycles, the lifespan can be calculated when operating in various wind classes. It is concluded that, although the LS PMSG is able to eliminate the gearbox, the lifespan of its MSC is lower than the one-stage MS generator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.