Abstract

In this study, the wear characteristics of two kinds of diamond segments with different composition of matrix were compared and investigated under two sawing modes through an experiment. Diamond particles were studied through scanning electron microscopy and three dimensional imaging system. Then, the remaining height of diamond segments was measured by digital vernier caliper. The wear characteristics of diamond segments were analyzed from wear morphology, protrusion height of diamond particles and the remaining height of diamond segments. The motion of two sawing modes and their effects on trajectories were analyzed which presented that the rocking reciprocating sawing mode can reduce sawing length and sawing time compared with horizontal reciprocating sawing mode used daily in industry. The results of experiment demonstrated that the main wear mechanism attributed to diamond segments wear is the fracture and falling of diamond particles caused by heavy loads especially in rocking reciprocating sawing mode. The average protrusion height of diamond particles is related with loads and the bonding strength of matrix. However, diamond segments wear can be effectively reduced in rocking reciprocating sawing mode while cobalt-based segments were adopted because a higher bonding strength to diamond particles can be provided compared with iron-based segments. The matrix of segments can be abrased slower while sawing length and sawing time were reduced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call