Abstract

Seedlings of two sympatric oak species, Quercus robur L. and Quercus petraea (Matt.) Liebl., were grown in common garden conditions to test for potential interspecific differences in intrinsic water-use efficiency (WUE). Intrinsic water-use efficiency was estimated based on carbon isotope composition of shoots (delta13C) and on gas exchange measurements (ratio of net CO2 assimilation rate to stomatal conductance (A/g(sw))). In addition, genotype x environment interactions were tested by subjecting the seedlings to four irradiance treatments (8, 18, 48 and 100% of incident solar irradiance) imposed by neutral shading nets, and, in the 100% irradiance treatment, two watering regimes. In all treatments, initial growth of Q. robur was faster than that of Q. petraea. In both species, there was a tight correlation between delta13C and A/g(sw). Intrinsic water-use efficiency increased with increasing irradiance (almost doubling from 8 to 100% irradiance), and this effect paralleled the increase in A with increasing irradiance. In full sun, WUE of Q. petraea seedlings was 10-15% higher than in Q. robur seedlings, with the difference attributable to a difference between the species in g(sw). The interspecific difference in WUE was maintained during drought, despite the appreciable increase in WUE and decrease in growth imposed by drought. No interspecific differences in WUE were observed at low irradiances, suggesting a strong genotype x environment interaction for WUE. These findings confirm the existence of interspecific genetic differences in WUE, but also show that there is large intraspecific variability and plasticity in WUE. The initially greater height and biomass increments in Q. robur seedlings illustrate the ability of this species to out-compete Q. petraea in the early stages of forest regeneration. For adult trees growing in closed canopies, the high WUE of Q. petraea may contribute significantly to its survival during dry years, whereas the low WUE of Q. robur may account for the frequently observed declines in adult trees of this species following drought.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.