Abstract

Global positioning system (GPS) radio occultation (RO) observations aboard low earth orbiting (LEO) satellites provide a powerful tool for global atmospheric sounding. Almost continuously activated since mid-2001, the challenging minisatellite payload (CHAMP) GPS RO experiment provides up to 200 vertical atmospheric profiles per day. In this paper, we intercompare CHAMP RO humidity results and analyses from the European Centre for Medium-Range Weather Forecasts (ECMWF) with coinciding measurement of ozone and water vapor by airbus in-service aircraft (MOZAIC) data collected during aircraft ascents and descents. About 320 coinciding profiles with CHAMP were found from 2001 to 2006 (coincidence radius: 3 h, 300 km). Between about 650 and 300 hPa, the CHAMP-MOZAIC humidity bias is smaller than the ECMWF-MOZAIC bias. On the other hand, the standard deviation between MOZAIC and CHAMP humidity is slightly higher than that between MOZAIC and ECMWF through the entire altitude range. Apart from the water vapor validation (ascent and descent data), we also compare MOZAIC cruise data at an altitude of typically 10-11 km with CHAMP refractivity and temperature results (dry retrieval), and corresponding ECMWF analysis data. Whereas refractivity data from MOZAIC, CHAMP, and ECMWF show excellent agreement, the CHAMP temperature exhibits a cold bias of about 0.9 K in comparison to MOZAIC and ECMWF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call