Abstract
Drying kinetics and quality parameters of potato cubes were evaluated as affected by high pressure processing and hot water blanching. The potato cubes in 1% citric acid solution as immersion medium were pressure treated at 400 MPa for 15 min. Hot water blanching was conducted in boiling water for 3 min. Drying kinetics and quality parameters (i.e., rehydrability, texture, color and apparent density) were assessed for the high pressure–treated and water-blanched samples and for dehydrated and rehydrated samples. Drying rates were found to be higher (p < 0.05) in the initial period of drying for the pressure treated samples. The Page model was found to better fit drying data of the thermally treated samples, and the two-terms model better described the drying behavior of high pressure–treated samples. High pressure–treated samples had a similar rehydrability to thermally treated samples. It was found that pressure–treated samples had a hardness value close to that of fresh samples, whereas thermal treatment resulted in a softer texture. After rehydration, samples of both treatments returned their texture before drying. The total color difference for the thermally blanched samples was higher (p < 0.05) than for pressure–treated samples before drying and after drying. High pressure–treated and dried potato cubes had a color close to that of fresh potato cubes. High pressure–treated and air-dried samples were found to have higher (p < 0.05) apparent density than thermally treated samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.