Abstract
The mass depopulation of production birds remains an effective means of controlling fast-moving, highly infectious diseases such as avian influenza and virulent Newcastle disease. Two experiments were performed to compare the physiological responses of White Pekin commercial ducks during foam depopulation and CO2 gas depopulation. Both experiment 1 (5 to 9 wk of age) and 2 (8 to 14 wk of age) used electroencephalogram, electrocardiogram, and accelerometer to monitor and evaluate the difference in time to unconsciousness, motion cessation, brain death, altered terminal cardiac activity, duration of bradycardia, and elapsed time from onset of bradycardia to onset of unconsciousness between foam and CO2 gas. Experiment 2 also added a third treatment, foam + atropine injection, to evaluate the effect of suppressing bradycardia. Experiment 1 resulted in significantly shorter times for all 6 physiological points for CO2 gas compared with foam, whereas experiment 2 found that there were no significant differences between foam and CO2 gas for these physiological points except brain death, in which CO2 was significantly faster than foam and duration of bradycardia, which was shorter for CO2. Experiment 2 also determined there was a significant positive correlation between duration of bradycardia and time to unconsciousness, motion cessation, brain death, and altered terminal cardiac activity. The time to unconsciousness, motion cessation, brain death, and altered terminal cardiac activity was significantly faster for the treatment foam + atropine injection compared with foam. Both experiments showed that bradycardia can occur as a result of either submersion in foam or exposure to CO2 gas. The duration of bradycardia has a significant impact on the time it takes White Pekin ducks to reach unconsciousness and death during depopulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.