Abstract

Hierarchical models are common for ecological analysis, but determining appropriate model selection methods remains an ongoing challenge. To confront this challenge, a suitable method is needed to evaluate and compare available candidate models. We compared performance of conditional WAIC, a joint-likelihood approach to WAIC (WAICj), and posterior-predictive loss for selecting between candidate N-mixture models. We tested these model selection criteria on simulated single-season N-mixture models, simulated multi-season N-mixture models with temporal auto-correlation, and three case studies of single-season N-mixture models based on eBird data. WAICj proved more accurate than the standard conditional formulation or posterior-predictive loss, even when models were temporally correlated, suggesting WAICj is a robust alternative to model selection for N-mixture models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.