Abstract

BackgroundTo determine whether denoised areal bone mineral density (BMD) measurements from scout scans in spectral detector computed tomography (CT) correlate with volumetric trabecular BMD for opportunistic osteoporosis screening.MethodsA 64-slice single-source dual-layer spectral CT scanner was used to acquire scout scan data of 228 lumbar vertebral bodies within 57 patients. Scout scans in anterior–posterior (AP) view were performed with a dose of < 0.06 mSv and spectrally decomposed into areal BMD (aBMD) values. A spectral dictionary denoising algorithm was applied to increase the signal-to-noise ratio (SNR). Volumetric trabecular bone mineral density (vBMD) was determined via material decomposition. A 3D convolutional network for image segmentation and labeling was applied for automated vBMD quantification. Projected maps were used to compare the classification accuracy of AP and lateral scout scans.ResultsThe denoising algorithm led to the minimization of anticorrelated noise in spectral maps and an SNR increase from 5.23 to 13.4 (p < 0.002). Correlation analysis between vBMD and measured AP aBMD, projected AP, and lateral aBMD showed a Pearson correlation coefficient of 0.68, 0.81, and 0.90, respectively. The sensitivity and specificity for the osteoporosis classification task were higher in lateral projection images than in AP crystallizing in an increased area under the curve value of 0.99 versus 0.90.ConclusionDenoised material-specific aBMD maps show a positive correlation to vBMD, enabling spectral scout scans as an opportunistic predictor for osteoporotic patients. This could be applied routinely as a screening tool in patients undergoing a CT examination.Relevance statementScout-based DEXA could be applied routinely as a screening tool in patients undergoing a CT examination.Key points• Spectral scout scans can be used as a dual-energy x-ray absorptiometry-like screening tool.• Spectral dictionary denoising on projection images increases the signal-to-noise ratio.• Positive correlation between volumetric and areal bone mineral density is observed.• Lateral projections increase osteoporosis classification accuracy compared to anterior-posterior projections.Graphical

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.