Abstract
Breast cancer related lymphedema (BCRL) may be assessed through objective measurement of limb swelling with common techniques including volumetric measurement using a tape measure or perometry, and measurement of extracellular water using bioimpedance spectroscopy (BIS). This study aimed to evaluate the performance of a stand-on BIS device for detection of BCRL, introduce a novel graphical method to compare volumetric and BIS methods alongside traditional specificity and sensitivity analysis, and determine and compare BIS thresholds with those published previously. Female participants with indocyanine green lymphography confirmed unilateral arm lymphedema (n = 197) and healthy controls (n = 267) were assessed using a cross-sectional study design. BIS and volumetric measures were obtained in a single session. The BIS lymphedema index (L-Dex) method had a significantly higher sensitivity than the excess volume approach (area under the curve = 0.832 vs. 0.649, p = 0.0001). A threshold of L-Dex 6.5 had a higher true positive rate (70.6%) than L-Dex 10 (68.5%) although false positive rate increased from 0.4% to 2.6%. A threshold of 5% excess volume improved the true positive rate (68.5%) compared with 10% excess volume (49.7%) however the false positive rate increased to an unacceptable 47%. The L-Dex ranges in this study were not significantly different from previously published ranges. BIS was superior for identifying BCRL compared with volume measurements, reaffirming the value of this technique. However, it is recommended that BIS be used in conjunction with comprehensive evaluation of symptoms and clinical presentation. The proposed graphical method provides a simple and easily interpretable approach to compare and define concordance between the two commonly used methods for BCRL assessment namely limb volume and BIS L-Dex indices. The existing BIS (L-Dex) thresholds for presence of BCRL were also validated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.