Abstract

BackgroundElucidating the histological characteristics of normal vascular smooth muscle cells (VSMCs) is important for understanding mechanisms of development, disease etiology and the remodeling and/or regeneration process of the vessel. However, knowledge regarding VSMCs is focused primarily on the artery. Although the characteristics of each great vessel are documented, few studies have examined VSMCs in parallel within each great vessel. The present study focused on comparing characteristics of canine VSMCs within the aorta (Ao), branch pulmonary artery (bPA), main pulmonary artery (mPA) and inferior vena cava (IVC), simultaneously.ResultsWestern blot and immunohistochemistry were used to determine VSMC protein content for alpha smooth muscle actin (ASMA), calponin, myosin heavy chain (MHC) and its isozyme SM2, and non-muscle myosin heavy chain B (SMemb). Thickness and ratio of the VSMC layer were also measured. Expression levels of ASMA, calponin and SM2 significantly differed between vessels, except between mPA and either bPA, Ao and IVC vessels. Expression levels of MHC were significantly different in all vessels, whilst expression of SMemb was significantly different in the Ao compared with either bPA and mPA vessels. All vessels were significantly different with respect to total wall and VSMC layer thickness. The ratio between VSMC layer and total wall thickness was significantly different for each vessel, except between bPA and mPA vessels. Histological analysis of the IVC revealed that the VSMC layer does not line evenly and continuously through the long axis or transverse sections. With respect to the pulmonary artery, calponin was expressed to a greater extent in the mPA compared with the bPA (P < 0.01*). In contrast, MHC and SM2 were expressed to a greater extent in the bPA compared with the mPA (P < 0.01*). Differences in VSMC distribution indicate structural differences in the proximal and distal pulmonary artery bifurcation.ConclusionOur results show that the VSMC expression pattern in each great vessel is unique and suggestive of the developmental differences between great vessels. We believe this study provides basic data for the pathology, etiology and regenerative capability of the vessels.

Highlights

  • Elucidating the histological characteristics of normal vascular smooth muscle cells (VSMCs) is important for understanding mechanisms of development, disease etiology and the remodeling and/or regeneration process of the vessel

  • The present study investigated canine great vessels adjacent to the heart, including the aorta, pulmonary artery and vena cava, to identify differences in expression levels of the major contractile and thin filament-binding proteins and thereby fill a deficit of vascular smooth muscle cell research

  • Significant differences were observed in all vessels (p < 0.01), except in branch pulmonary artery (bPA) vs. main pulmonary artery (mPA) (p = 0.70)

Read more

Summary

Introduction

Elucidating the histological characteristics of normal vascular smooth muscle cells (VSMCs) is important for understanding mechanisms of development, disease etiology and the remodeling and/or regeneration process of the vessel. The present study focused on comparing characteristics of canine VSMCs within the aorta (Ao), branch pulmonary artery (bPA), main pulmonary artery (mPA) and inferior vena cava (IVC), simultaneously. Elucidation of the histological distribution of normal VSMCs is important for understanding mechanisms of development, causes of hypertension, occurrence of leiomyoma, remodeling following vascular injury and regenerative medicine approaches. The volume and distribution of these layers differs remarkably with regard to the role of the vessels. It is well-documented that arteries and veins display distinct histological differences. The architecture of the vena cava is similar to that of the arteries, the smooth muscle layer is still much thinner [1]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.