Abstract

Several analyses of allergen levels have been reported as part of the safety assessment of genetically modified (GM) soybean; however, few comprehensive analyses have included new allergens. Thus, in this study the levels of eight major soybean allergens, including Gly m 7 (a newly reported soybean allergen), were semi-quantitatively detected in six GM soybeans and six non-GM soybeans using antigen-immobilized ELISA and immunoblotting. We also analyzed the IgE-reactivity to these soybeans through immunoblotting, using sera from three soybean-allergic patients. The results showed that there were no significant differences in the levels of the major soybean allergens in the GM and non-GM soybeans. Moreover, there were no significant differences in the serum IgE-reactive protein profiles of the patients, as analyzed using immunoblotting. These results indicate that, in general, CP4-EPSPS-transfected GM soybeans are not more allergenic than non-GM soybeans.

Highlights

  • Food resource problems associated with climate change, environmental destruction, and population growth are of increasing concern

  • Two

  • Had not been had genetically modified tomodified express and results confirmed that that all six soybeansoybean speciesspecies used in this study been genetically

Read more

Summary

Introduction

Food resource problems associated with climate change, environmental destruction, and population growth are of increasing concern. As a means to overcome these concerns, scientists have developed “genetic modification technology”, which alters the properties of agricultural products. Using this technology, genetically modified (GM) crops have been developed that are more resistant to herbicides and contain beneficial traits such as drought tolerance, delayed ripening, bacterial disease resistance, high oleic acid levels, and pest resistance, to prepare for an increase in global demand [1,2,3,4]. Soybean allergies can be divided into class 1 food allergies and class 2 food allergies based on differences in sensitization routes [7,8]; 7S globulin (Gly m 5) [9,10], 11S globulin (Gly m 6) [11], Gly m 7 [12], Gly m Bd 30K [13,14], Kunitz-type trypsin inhibitor [15], oleosin [16], etc

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call