Abstract

During a Hypothetical Core Disruptive Accident in a Liquid Metal Fast Breeder Reactor, it is assumed that the core of the nuclear reactor melts down partially and that the interaction between hot molten fuel and relatively cold liquid sodium creates a high-pressure gas bubble in the core. The violent expansion of this bubble loads and deforms the reactor vessel and the internal structures, thus endangering the safety of the nuclear plant. The MARA 10 experimental test simulates a Core Disruptive Accident in a 1/30-scale mock-up schematising a reactor block. In the mock-up, the liquid sodium cooling the reactor core is replaced by water and the argon blanket laying below the reactor roof is simulated by an air blanket. The explosion is triggered by an explosive charge. This paper presents some models available within the EUROPLEXUS code to simulate a Core Disruptive Accident and an analysis of the computed results. In particular, results are compared with experimental measurements and previous numerical simulations carried out with the codes SIRIUS and CASTEM-PLEXUS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call