Abstract

For Hilbert space operatorsH,K,XwithH,K⩾0 the norm inequality |||H1/2XK1/2|||⩽12|||HX+XK||| is known, where |||·||| is an arbitrary unitarily invariant norm. A refinement of this arithmetic–geometric mean inequality is studied. Similar norm inequalities are indeed established for various natural means for operators such as the logarithmic mean.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.