Abstract

One of the commonly used performance measures to quantify a vehicle's handling transient dynamics is the maximum forward speed (MFS) while passing a certain specified double-lane change (DLC) manoeuvre without violating the boundary and tyre lift-off. The MFS is directly associated with the minimum curvature radius (MCR) of the vehicle centre of gravity (CG) trajectory controlled by the driver during the manoeuvre. The MCR is further affected by the vehicle dimensions to meet the boundary condition. In this study, a single heavy vehicle CG trajectory is assumed to be a combination of three straight lines and two third-order spline curves. A heavy vehicle multi-body system model established with ADAMS/Car is correlated with test data for step-steer and constant radius cornering events, and then the model is used to demonstrate that the assumptions considered in the formulation applied in this paper are valid for this specific vehicle category. The MCRs of four heavy vehicles are maximised among all the possible choices of the vehicle CG trajectory during each of five specific DLC manoeuvres, including North Atlantic Treaty Organization (Allied Vehicle Testing Publication 03-160W), International Organization for Standardization (ISO) 3888-1, ISO 3888-2, Consumer Union Short Course and Test Operations Procedure 2-2-609. The maximised MCR (MMCR), considered as the best possible choice of vehicle CG trajectories, is further solved as a function of the vehicle width and length. The results will show the sensitivity of the MMCR to the vehicle length and width, thus the impact on the vehicle transient handling dynamics. Finally, the comparison of five DLC specifications may help users to correlate a vehicle's MFS from one specification to others.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call