Abstract

Factors responsible for the persistence of Arkansas Delmarva Poultry Industry (ArkDPI)-derived infectious bronchitis vaccines in commercial flocks and the high frequency of isolation of ArkDPI-type infectious bronchitis viruses in respiratory cases are still unclear. We compared dynamics of vaccine viral subpopulations, viral loads, persistence in trachea and cloaca, and the magnitude of infectious bronchitis virus (1BV)-specific antibody induction after vaccination with two commercial ArkDPI-derived Arkansas (Ark) serotype vaccines. One of the vaccines (coded vaccine B) produced significantly higher vaccine virus heterogeneity in vaccinated chickens than the other vaccine (coded A). Chickens vaccinated with vaccine B had significantly higher viral loads in tears at 5 days postvaccination (DPV) than those vaccinated with vaccine A. Vaccine B also induced a significantly higher lachrymal immunoglobulin M response at 11 DPV, an earlier peak of IBV-specific lachrymal immunoglobulin A, and higher serum antibodies than vaccine A. In addition, a significantly higher proportion of birds vaccinated with vaccine B had vaccine virus detected in the trachea at 20 DPV than those vaccinated with vaccine A. Furthermore, the virus detected at 20 DPV in most of the chickens vaccinated with vaccine B was a single specific subpopulation (subpopulation 4) selected from multiple vaccine subpopulations detected earlier at 5 and 7 DPV in the same chickens. On the other hand, a higher proportion of chickens vaccinated with vaccine A had virus detected in cloacal swabs at 20 DPV. Thus we found differences in mucosal antibody induction and selection and persistence of vaccine viruses between two ArkDPI-derived vaccines from different manufacturers. The higher vaccine virus heterogeneity observed in chickens vaccinated with vaccine B compared with those vaccinated with vaccine A may be responsible for these differences. Thus the high frequency of Ark IBV viruses in the field may be due to the inherent ability of some ArkDPI-derived vaccine viruses to be selected and persist in vaccinated chickens. Vaccine virus persistence may offer genetic material for recombination or may undergo mutations with the potential to result in increased virulence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.