Abstract
The second track of the 2014 i2b2 challenge asked participants to automatically identify risk factors for heart disease among diabetic patients using natural language processing techniques for clinical notes. This paper describes a rule-based system developed using a combination of regular expressions, concepts from the Unified Medical Language System (UMLS), and freely-available resources from the community. With a performance (F1=90.7) that is significantly higher than the median (F1=87.20) and close to the top performing system (F1=92.8), it was the best rule-based system of all the submissions in the challenge. We also used this system to evaluate the utility of different terminologies in the UMLS towards the challenge task. Of the 155 terminologies in the UMLS, 129 (76.78%) have no representation in the corpus. The Consumer Health Vocabulary had very good coverage of relevant concepts and was the most useful terminology for the challenge task. While segmenting notes into sections and lists has a significant impact on the performance, identifying negations and experiencer of the medical event results in negligible gain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.