Abstract

AbstractIn this work an ultrasonic velocity technique was compared to direct pulsed NMR (pNMR) spectroscopy for the determination of the solid fat content (SFC) of anhydrous milk fat (AMF), cocoa butter (CB), and blends of AMF and CB with canola oil (CO) in the range 100 to 70% (w/w). In situ measurements of ultrasonic velocity were carried out during cooling (50–5°C) and heating (5–50°C) of the fat samples, and SFC values were calculated. The SFC were also determined simultaneously by pNMR. Peak melting temperatures determined by DSC were used as an indicator of the polymorphic state of the different fats and fat blends. Estimates of SFC obtained using pNMR and ultrasonic velocimetry did not agree. Our results suggested that ultrasonic velocity was highly dependent on the polymorphic state of the solid fat. Ultrasonic velocity in fat that contained crystals in a more stable polymorphic form was consistently higher than in fat that contained crystals in a less stable polymorphic modification. A high attenuation of the signal was observed in milkfat and CB at lower temperatures, particularly after sitting for 24 h. This high attenuation could be a product of scattering by crystallites or by microscopic air pockets formed upon solidification of the material, or it could be due to high ultrasonic absorption associated with phase transitions. This research highlights some of the problems associated with applying ultrasonics to the determination of SFC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call