Abstract

The effects of material and experimental parameters on the nonvolatile two-color holographic recording space charge field and sensitivity for different doped LiNbO3:Fe crystals have been studied theoretically based on a two-center model. When the direct electron transfer between the deep-trap centers and the shallow-trap centers was considered, the near-stoichiometric LiNbO3:Fe is confirmed theoretically to be of bigger space charge field and higher recording sensitivity than the LiNbO3:Fe:Mn and LiNbO3:Cu:Ce in the low intensity region. A further improvement of the recording sensitivity can be achieved by doping concentration, thermal reduction treatment of Fe, appropriate gating and recording wavelengths with large photo-excitation cross sections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.