Abstract
In this paper, two different types of ultra-fast electromechanical actuators are compared using a multi-physical finite element simulation model that has been experimentally validated. They are equipped with a single-sided Thomson coil (TC) and a double-sided drive coil (DSC), respectively. The former consists of a spirally-wound flat coil with a copper armature on top, while the latter consists of two mirrored spiral coils that are connected in series. Initially, the geometry and construction of each of the actuating schemes are discussed. Subsequently, the theory behind the two force generation principles are described. Furthermore, the current, magnetic flux densities, accelerations, and induced stresses are analyzed. Moreover, mechanical loadability simulations are performed to study the impact on the requirements of the charging unit, the sensitivity of the parameters, and evaluate the degree of influence on the performance of both drives. Finally, it is confirmed that although the DSC is mechanically more complex, it has a greater efficiency than that of the TC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.