Abstract

BackgroundWhether they are injected peri- or intraocularly, corticosteroids are still essential tools in the therapeutic arsenal for treating inflammatory macular oedema. A few years ago, however, only triamcinolone acetonide was available to ophthalmologists. While this compound was initially developed for rheumatological or dermatological use, it has been increasingly deployed in ophthalmology, despite still being off-label. In 2011, the system for delivery of dexamethasone from a biodegradable, injectable implant into the vitreous cavity obtained approval for use in inflammatory macular oedema. While the efficacy and safety of triamcinolone in macular oedema, including inflammatory oedema, have already been studied, there are currently no publications on subconjunctival triamcinolone injections, which are simple, effective and well tolerated. To date, the dexamethasone 700 μg implant has been authorized for the treatment of noninfectious intermediate and posterior uveitis, but there have been no studies to evaluate the efficacy and safety of the different peri- and intraocular strategies, including the treatment of inflammatory macular oedema.MethodsThis protocol is therefore designed to compare the efficacy and safety of peri- and intraocular corticosteroid injections in the treatment of inflammatory macular oedema. In this ongoing study, 142 patients will be included, and the oedematous eye will be randomised to treatment with either subconjunctival triamcinolone injection or an intravitreal implant containing 700 μg dexamethasone. Follow-up is planned for 6 months with monthly visits. Each visit will include visual acuity measurement, a slit lamp examination, fundoscopy, intraocular pressure measurement, laser flare measurement (if available) and spectral domain optical coherence tomography.DiscussionThe results of this trial will have a real impact on public health if it is shown that a Kenacort retard® (i.e. triamcinolone) injection costing just €2.84 and performed in the physician’s office (with no additional overhead costs) is at least as effective as the dexamethasone 700 μg implant (Ozurdex®; costing approximately €960 with the injection performed in a dedicated room), with no increased side effects.Trial registrationClinicalTrials.gov, NCT02556424. Registered on 22 September 2015.

Highlights

  • Whether they are injected peri- or intraocularly, corticosteroids are still essential tools in the therapeutic arsenal for treating inflammatory macular oedema

  • Couret et al Trials (2020) 21:159 (Continued from previous page) laser flare measurement and spectral domain optical coherence tomography. The results of this trial will have a real impact on public health if it is shown that a Kenacort retard® injection costing just €2.84 and performed in the physician’s office is at least as effective as the dexamethasone 700 μg implant (Ozurdex®; costing approximately €960 with the injection performed in a dedicated room), with no increased side effects

  • It is responsible for 26.8% to 42% of acute visual loss [1, 3], comparable to the older Rothova series, which pointed to inflammatory macular oedema as being responsible for 29% of legal blindness and 41% of decreases in visual acuity [4]

Read more

Summary

Introduction

Whether they are injected peri- or intraocularly, corticosteroids are still essential tools in the therapeutic arsenal for treating inflammatory macular oedema. The dexamethasone 700 μg implant has been authorized for the treatment of noninfectious intermediate and posterior uveitis, but there have been no studies to evaluate the efficacy and safety of the different peri- and intraocular strategies, including the treatment of inflammatory macular oedema. Macular oedema is present in one-third of cases of uveitis in the Lardenoye series [1], and is the leading complication causing blindness in uveitis. It is responsible for 26.8% to 42% of acute visual loss [1, 3], comparable to the older Rothova series, which pointed to inflammatory macular oedema as being responsible for 29% of legal blindness and 41% of decreases in visual acuity [4]. The disruption to homeostasis and retinal detoxification causes macular cell death, which explains the absence of ad integrum recovery of visual acuity in cases of extended inflammatory macular oedema

Objectives
Methods
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.