Abstract

Predictive transport simulations of the temperature and density profiles have been carried out for Tokamak Fusion Test Reactor (TFTR) [K. Young et al., Plasma Phys. Controlled Fusion 26, 11 (1984)] current, density, and heating power scans. Two competing resistive ballooning mode theories are considered in order to examine their intrinsic magnetic-q dependence. The theoretically derived transport model employed in this study includes drift wave contributions from the Weiland theory of trapped electron and ion temperature gradient modes, the Kwon–Biglari–Diamond neoclassical magnetohydrodynamic (MHD) theory, the Tang–Rewoldt kinetic ballooning mode theory, and either the previously used Carreras–Diamond or the recently developed Guzdar–Drake resistive ballooning mode theories. It is found that the Guzdar–Drake theory provides the correct scaling with plasma current while maintaining a scaling with density and auxiliary heating power that is consistent with experimental data from TFTR low confinement (L-mode) plasmas. A statistical analysis of the profile results for the current scan is included to give quantitative measures of how well simulations that include either the Guzdar–Drake or the Carreras–Diamond theory compare with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.