Abstract

The propagation of the surface waves in elastic media has been extensively studied and is very important in many fields. The Laplace domain Boundary Element Method (BEM) is powerful and accurate numerical method that can be employed for treating such problems. Since anisotropic elastic problems is very computationally challenging for any BEM formulation, the choice of particular numerical Laplace inversion algorithm is crucial for efficient anisotropic elastodynamic Laplace domain boundary element analysis. In this investigation, for a specific problem of anisotropic linearly elastic half space subjected to transient loading, we examine two different methods for numerical inversion of Laplace transforms. The first method we test is the renowned Durbin’s method which is based on a Fourier series expansion. The second method is the convolution quadrature method which is reformulated as a numerical Laplace transform inversion routine. Methods are compared in the context of their application in the framework of Laplace domain collocation boundary element formulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.