Abstract

The textural attributes of 8 different heat‐induced protein gel preparations evaluated by torsion failure testing and Instron texture profile analysis (TPA) were compared to sensory ratings by a trained texture profile panel. The gels presented a wide range of textural properties as determined by the instrumental and sensory parameters. Among the instrumental parameters, true shear strain at failure was the most frequent and significant predictor of sensory notes. Initial shear modulus and 50% compression force had the poorest correlations with sensory notes. Comparison of the two instrumental tests produced high correlations between shear stress at failure and TPA hardness; true shear strain at failure and TPA cohesiveness; and, initial shear modulus and 50% compression force. High correlations were also observed among various panel notes. Canonical correlation analyses showed that sets of linear combinations of parameters from each one of the 3 tests (torsion, TPA or sensory) were highly correlated to sets from either of the other two. Regression equations relating each of the instrumental tests to sensory notes were developed. Of the torsion failure parameters, the logarithm of true shear strain most commonly appeared in the equations. Of the TPA parameters, cohesiveness and its logarithm were the terms that were most frequent. High R2 values were obtained for regression equations developed for predicting torsion failure parameters based on TPA parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call