Abstract

The phenylalanine- and salicylate assay were compared to investigate the production of hydroxyl free radicals. In vitro experiment: Phenylalanine (100 μmol/l) or salicylic acid (100 μmol/l) were incubated in a hydroxyl radical generating in vitro Fenton system with increasing concentrations (1.25–40 μmol/l) of equimolar hydrogen peroxide and ferrous ions. Both, phenylalanine and salicylic acid were able to trap hydroxyl radicals in a reliable way indicated by the linear relationship between the concentration of the Fenton reagents and either the phenylalanine derived products ( ortho-, meta-, para-tyrosine) or the salicylic acid-derived products (2,3- and 2,5-dihydroxybenzoic acid (DHBA)). In vivo experiment: Wistar rats were implanted with microdialysis probes and striatal perfusion with either 5 mmol/l phenylalanine or 5 mmol/l salicylic acid was performed. Addition of the dopaminergic neurotoxin 6-hydroxydopamine (100 μmol/l, flow rate 2 μl/min, 60 min) to the perfusion fluid significantly increased the concentrations of ortho- and meta-tyrosine or 2,3-DHBA in comparison to control animals. All increases determined were rapidly reversible after changing back to pre-stimulation conditions. The results demonstrate that aromatic hydroxylation of phenylalanine or salicylic acid is a useful technique to investigate hydroxyl free radical formation in vitro and in vivo. Advantages and disadvantages of both methods are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.