Abstract

Bahia grass ( Paspalum notatum Flugge.) plants were grown in silica sand and irrigated daily with one of five levels of Zn (0, 0.5, 25, 50, or 100 mg l −1) to determine the effects of the heavy metal on the growth and development of plant canopies. Healthy and stressed plants were measured with two hyperspectral imagers, laser-induced fluorescence spectroscopy (LIFS), and laser-induced fluorescence imaging (LIFI) systems in order to determine if the four handheld remote sensing instruments were equally capable of detecting plant stress and measuring canopy chlorophyll levels in bahia grass. Symptoms of bahia grass plants grown at deficient (0 mg l −1) or toxic (25, 50, or 100 mg l −1) concentrations of Zn were dominated by leaf chlorosis and plant stunting. Leaf fresh weight, leaf dry weight, CO 2 assimilation, total chlorophyll, and leaf thickness followed (+) quadratic models in which control plants (0.5 mg l −1 Zn) exhibited higher responses than plants grown at either deficient or toxic levels of Zn. Normalized difference vegetation index [NDVI=(NIR−Red)/(NIR+Red)] and ratio vegetation index [RVI= R 750/ R 700, in which R denotes reflectance] values were calculated for calibrated digital images from both hyperspectral imagers. The NDVI and RVI values from both hyperspectral imagers were fit best by (+) quadratic models when treatments were constrained between 0 and 100 mg l −1 Zn, but were fit best by linear regression models with (−) slopes when treatments were constrained between 0.5 and 100 mg l −1 Zn. Furthermore, both NDVI and RVI algorithms were effective in predicting the concentrations of chlorophyll in canopies of bahia grass grown at the various levels of Zn. In contrast, red/far-red (R/FR) fluorescence ratios estimated from leaf fluorescence values measured with the LIFS and LIFI instruments were fit best by (−) quadratic models when treatments were constrained between 0 and 100 mg l −1 Zn, but were fit best by linear regression models with (+) slopes when treatments were constrained between 0.5 and 100 mg l −1 Zn. A series of regression analyses were conducted among plant biometric, biochemical, and leaf anatomical parameters (treated as independent variables) and the remote sensing algorithms, NDVI, RVI, blue/green (BL/GR), and R/FR (treated as dependant variables). In general, residuals were significantly higher for NDVI and RVI models compared to the BL/GR and R/FR models indicating that the NDVI and RVI algorithms were able to measure total chlorophyll and plant biomass more accurately than the BL/GR and R/FR algorithms. However, unique capabilities of LIFS and LIFI instruments continue to argue for the development of laser-induced fluorescence remote sensing technologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call