Abstract

Objective: This study aimed to compare the behavior of dental pulp stem cells (DPSCs) after isolation using solutions containing either collagenase/dispase or collagenase alone. Design: DPSCs were isolated by two digestion methods (collagenase/dispase or collagenase alone) from human third molars. Immunophenotypic features were confirmed by flow cytometry for cell markers STRO-1, cluster of differentiation (CD) 146, CD45, and collagen type-I. The proliferation potential of cells was evaluated by 5-bromo-2′-deoxyuridine (brdU) incorporation assay, and finally they were assessed for multi-lineage differentiation potential. Data were analyzed using one-way analysis of variance and independent t-tests. Results: DPSCs isolated by either method showed similar levels of STRO-1, CD45, and collagen type-I and similar incorporation of brdU (P > 0.05). However, DPSCs obtained by collagenase I/dispase treatment had significantly higher numbers of CD146+ cells and osteogenic and chondrogenic capacities compared to those obtained by treatment with collagenase I alone (P < 0.05). On the other hand, more STRO-1+/CD164-DPSCs were found in the collagenase alone group with higher adipogenic potential. Conclusions: Different enzyme solutions gave rise to different populations of DPSCs. Dispase enhanced isolation of CD146+ DPSCs probably by disrupting the basement membranes of blood vessels and releasing DPCSs embedded in the perivascular niche. Furthermore, the differentiation potential of DPSCs was influenced by the change in enzyme solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.