Abstract

The microstructure and mechanical properties of ferrite-bainite dual-phase pipeline steels respectively produced by thermomechanical control process (TMCP) and intercritical annealing were studied using optical microscope, scanning electron microscope (SEM), Vickers hardness tester and MTS 810 servo-hydraulic machine. The results show that these two processes obtain different morphology and distribution of microstructure, but the mechanical properties of them are similar and superior, especially the yield ratios are low. It is found that for TMCP steel, the grains of ferrite are large and the average ferrite grain size is approximately 6.1µm. The bainite structures are lump-shaped with concentrated distribution in the ferrite matrix and the band structure is obvious. For steels produced by intercritical annealing process, the grains are finer and the distribution of bainite is uniform on the ferrite grain boundaries. From the rolling plane to the centre, the grain sizes of ferrite in these two microstructures increase obviously, and the volume fraction of bainite first increases significantly, then decreases slightly in the TMCP steel and the average volume fraction is approximately 60.1%. However, the bainite volume fraction in the intercritical annealing steel decreases gradually and the average volume fraction is approximately 35.4%. Moreover, hardness values in through-thickness direction are uniform in the TMCP steel and these values are also similar in the intercritical annealing steel except the values in the region near the rolling plane are much larger.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.