Abstract

Abstract Allegheny woodrats Neotoma magister are an imperiled small mammal species most associated with emergent rock habitats in the central Appalachian Mountains and the Ohio River Valley. The monitoring of populations and their spatiotemporal distributions typically has relied on labor-intensive livetrapping. The use of remote-detecting cameras holds promise for being an equally or more effective method to determine species presence, although trap-based captures permit the estimation of other parameters (e.g., survival, population size, site fidelity). In 2017, 2018, and 2020 we compared standard livetrapping with paired cameras for determining site occupancy of Allegheny woodrats in the central Appalachian Mountains of western Virginia. We further examined the influence of baited vs. unbaited cameras at several sites of confirmed occupancy in 2019. We observed that the detection probability using cameras was approximately 1.7 times that of live traps. Also, detection probability at baited camera traps was 1.3–2.0 times that of unbaited camera traps. Estimates of occupancy ranged from 0.44 to 0.49. Our findings suggest that the use of baited remote-detecting cameras provides a more effective method than livetrapping for detecting Allegheny woodrats. Our study provides a framework for the development of a large-scale, long-term monitoring protocol of Allegheny woodrats with the goals of identifying changes in the distribution of the species and quantifying local extinction and colonization rates at emergent rock outcrops and caves throughout the species' known distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call