Abstract

PurposeThe purpose of this study was to compare the performance of Precise IQ Engine (PIQE) and Advanced intelligent Clear-IQ Engine (AiCE) algorithms on image-quality according to the dose level in a cardiac computed tomography (CT) protocol. Materials and methodsAcquisitions were performed using the CT ACR 464 phantom at three dose levels (volume CT dose indexes: 7.1/5.2/3.1 mGy) using a prospective cardiac CT protocol. Raw data were reconstructed using the three levels of AiCE and PIQE (Mild, Standard and Strong). The noise power spectrum (NPS) and task-based transfer function (TTF) for bone and acrylic inserts were computed. The detectability index (d’) was computed to model the detectability of the coronary lumen (350 Hounsfield units and 4-mm diameter) and non-calcified plaque (40 Hounsfield units and 2-mm diameter). ResultsNoise magnitude values were lower with PIQE than with AiCE (−13.4 ± 6.0 [standard deviation (SD)] % for Mild, -20.4 ± 4.0 [SD] % for Standard and -32.6 ± 2.6 [SD] % for Strong levels). The average NPS spatial frequencies shifted towards higher frequencies with PIQE than with AiCE (21.9 ± 3.5 [SD] % for Mild, 20.1 ± 3.0 [SD] % for Standard and 12.5 ± 3.5 [SD] % for Strong levels). The TTF values at fifty percent (f50) values shifted towards higher frequencies with PIQE than with AiCE for acrylic inserts but, for bone inserts, f50 values were found to be close. Whatever the dose and DLR level, d’ values of both simulated cardiac lesions were higher with PIQE than with AiCE. For the simulated coronary lumen, d’ values were better by 35.1 ± 9.3 (SD) % on average for all dose levels for Mild, 43.2 ± 5.0 (SD) % for Standard, and 62.6 ± 1.2 (SD) % for Strong levels. ConclusionCompared to AiCE, PIQE reduced noise, improved spatial resolution, noise texture and detectability of simulated cardiac lesions. PIQE seems to have a greater potential for dose reduction in cardiac CT acquisition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.