Abstract

PurposeThe purpose of this study was to compare the effect of two deep learning image reconstruction (DLR) algorithms in chest computed tomography (CT) with different clinical indications. Material and methodsAcquisitions on image quality and anthropomorphic phantoms were performed at six dose levels (CTDIvol: 10/7.5/5/2.5/1/0.5mGy) on two CT scanners equipped with two different DLR algorithms (TrueFidelityTM and AiCE). Raw data were reconstructed using the filtered back-projection (FBP) and the lowest/intermediate/highest DLR levels (L-DLR/M-DLR/H-DLR) of each algorithm. Noise power spectrum, task-based transfer function (TTF) and detectability index (d’) were computed: d’ modelled detection of a soft tissue mediastinal nodule, ground-glass opacity, or high-contrast pulmonary lesion. Subjective image quality of anthropomorphic phantom images was analyzed by two radiologists. ResultsFor the L-DLR/M-DLR levels, the noise magnitude was lower with TrueFidelityTM than with AiCE from 2.5 to 10 mGy. For H-DLR, noise magnitude was lower with AiCE . For L-DLR and M-DLR, the average NPS spatial frequency (fav) values were greater for AiCE except for 0.5 mGy. For H-DLR levels, fav was greater for TrueFidelityTM than for AiCE. TTF50% values were greater with AiCE for the air insert, and lower than TrueFidelityTM for the polyethylene insert. From 2.5 to10 mGy, d’ was greater for AiCE than for TrueFidelityTM for H-DLR for all lesions, but similar for L-DLR and M-DLR. Image quality was rated clinically appropriate for all levels of both algorithms, for dose from 2.5 to 10 mGy, except for L-DLR of AiCE. ConclusionDLR algorithms reduce the image-noise and improve lesion detectability. Their operations and properties impacted both noise-texture and spatial resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.