Abstract
Japanese cypress ( Chamaecyparis obtusa Endl.) and Japanese cedar ( Cryptomeria japonica D. Don) are common species for plantation forestry in Japan. Cypress is conventionally planted on sites of low fertility whereas for cedar high fertility sites are used. Objectives of this study were to compare the productivities of cypress and cedar plantations grown on adjacent sites where common properties of soils, such as pH values and C and N contents, were similar, and to relate the N cycling at their site with productivities. The stem diameter of trees, aboveground litter production and fine root biomass were measured as indices of forest productivity. Parameters of N cycling included pools of total N and mineral N (ammonium + nitrate), annual N leaching, and potentially mineralizable N. The radial stem increment of the two tree species was similar. However, cedar site had higher total basal area and annual basal increment than cypress site reflecting higher tree density on the cedar site. Aboveground litter, fine root biomass, soil organic matter, and N turnover were higher on the cedar site than on the cypress site. However, litter production and fine root biomass per unit basal area was greater at the cypress site. Phenological pattern of stem growth and periodical litter production were similar for both species during the study period (1992–2000), but showed distinct annual variations caused by the fluctuation in the ambient temperature and precipitation. Mineral N content and the N mineralization potential were greater on the cedar site, indicating greater N availability and higher total tree productivity at the cedar site than those at the cypress site. When provided with more space in the canopy to expand more needles and in the soil to develop more fine roots to exploit sufficient resources, the individual cypress trees have the potential to grow faster. On fertile site and at lower tree density, thicker logs of cypress might be yielded.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.