Abstract

Abstract Predicting the fatigue life of threaded connections using finite element analysis generally requires a 2-D axisymmetric model capable of handling non-axisymmetric loading in order to simulate an applied bending moment. This is desirable from the standpoint of computer run time, as compared with the alternative approach, namely, developing a full 3-D model. Unfortunately, due to their esoteric nature, the 2-D axisymmetric elements with non-axisymmetric loading capability are not supported by the software vendors as well as the other elements, hence pre- and post-processing are more challenging. In addition, due to the Fourier representation of the non-axisymmetric load, computer run time and storage is increased significantly over that of a strictly 2-D axisymmetric model. In view of this, common practice has been to use instead the conventional axisymmetric model with an equivalent applied axial tensile stress equal to the mean bending stress through the wall thickness in order to simulate the bending moment and thereby avoid the necessity for non-axisymmetric loading. The question therefore arises as to how well the results from the strictly axisymmetric model agree with the results from the axisymmetric model with non-axisymmetric loading capability. The purpose of this paper is to compare the results of the two models. A 5-1/2 F.H. threaded connection is modeled by means of a commercial finite element code. First, the axisymmetric model with non-axisymmetric loading capability is treated and results are obtained. Second, the axisymmetric model with applied equivalent tensile load is examined and its results are compared with the former model. It is found that the value of the primary variable of interest for quantification of fatigue life, namely, alternating stress, agrees between the two models within 4%. Thus, it is concluded that the simplified model provides a viable alternative for modeling fatigue life of threaded connections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call